

آموزششترجمهة متونرياضى

تر جمه براى دانش آموزان
ë Consider the following events for a family with children:
$A=\{$ children of both sexes\},
$B=\{$ at most one boy\}
(a) Show that A and B are independent events if a family has three children.
(b) Show that A and B are dependent events if a family has only two children.
(a) We have the equiprobable spase
$S=\{b b b, b b g, b g b, b g g, g b b, g b g, g g b$, ggg). Here
$A=\{b b g, b g b, b g g, g b b, g b g, g g b\}$
and so $\mathrm{P}(\mathrm{A})=\frac{6}{8}=\frac{3}{4}$
$B=\{b g g, g b g, g g b, g g g\}$
and so $\mathrm{P}(\mathrm{B})=\frac{4}{8}=\frac{1}{2}$
$A \cap B=\{b g g, g b g, g g b\}$
and so $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{8}$
Sinc $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{3}{4} \cdot \frac{1}{2}=\frac{3}{8}=\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
A and B are independent.
(b) We have the equiprobable space
$S=\{b b, b g, g b, g g\}$. Here
$A=\{b g, g b\}$ and so $\mathrm{P}(\mathrm{A})=\frac{1}{2}$
$B=\{b g, g b, g g\}$ and so $\mathrm{P}(\mathrm{B})=\frac{3}{4}$
$A \cap B=\{b g, g b\}$ and so $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{2}$
Since $P(A) P(B) \neq P(A \cap B), A$ and B are dependent.
I. جعبئ A شـامل ینج مهرئ قرمز و سه مهرة أبى است و جعبؤ B شامل سه
 كشيده شده.

الف) احتمال انتخاب يك مهرة قرمز از A برابر با . $P=\frac{\Delta}{\Lambda} \times \frac{r}{\Delta}=\frac{r}{\Lambda} \frac{r}{\wedge}$ حون پيشامدها مستق
 برابر اسـت با:

$$
P=P_{1}+P_{r}=\frac{1}{r^{2}}+\frac{q}{\mu_{0}}=\frac{19}{\mu_{0}}
$$

K پيشامدهايى مستقل هستند.

بإســخت فــرض كنيــد: P(A , $P\left(B^{C}\right)=1-y$,
$P(A \cap B)=P(A) \times P(B)=x y$
بدعلاوه:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=x+y-x y$
با استفاده از قانون دمور كان داريم:
$(\mathrm{A} \cup \mathrm{C})^{\mathrm{C}}=\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{C}}$
بنابراين:
$P\left(A^{C} \cap B^{C}\right)=P\left((A \cup B)^{C}\right)=1-P(A \cup B)=1-x-y+x y$
از طرف ديكر:
$P\left(A^{C}\right) P\left(B^{C}\right)=(1-x)(1-y)=1-x-y+x y$
به طريق مشـابه، ما مىتوانيم نشان بدهيم كه A و BC، همحتنين، AC و
B نيز مستقلاند.

	لغتها و اصطلاحات مهم
1.Contain ... شامل بود	2.Marble ..
3.Random ... ${ }^{\text {. }}$	4.Probability ... احتمال
5. Choosing .. انتخاب كردن	6. Event ..
7.Independent ...	
9.Similar ...	

$\ddot{\text { EBbx }} A$ contains five red marbles and three blue marbles, and box B contains three red and two blue. A marble is drawn at random from each box.
(a) Find the probability p that both marbles are red.
(b) Find the probability p that one is red and one is blue.
(a) The probability of choosing a red marble from A is $\frac{5}{8}$ and from B is $\frac{3}{5}$. Since the events are independent, $\mathrm{P}=\frac{5}{8} \times \frac{3}{5}=\frac{3}{8}$.
(b) The probability P_{l} of choosing a red marble from A and a blue marble from B is $\frac{5}{8} \times \frac{2}{5}=\frac{1}{4}$. The probability P_{2} of choosing a blue marble from A and a red marble from B is $\frac{3}{8} \times \frac{3}{5}=\frac{9}{40}$. Hence $P=P_{1}+P_{2}=\frac{1}{4}+\frac{9}{40}=\frac{19}{40}$.

Prove: If A and B are independent events, then A^{C} and B^{C} are independent events.
Let $P(A)=x$ and $P(B)=y$. Then $P\left(A^{C}\right)=1-x$ and $P\left(B^{C}\right)=1-y$. Since A and B are independent. $P(A \cap B)=P(A) P(B)=x y$. Furthermore,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=x+y-x y
$$

By DeMorgan's law, $(A \cup B)^{C}=A^{C} \cap B^{C}$; hence
$\left.\left.P\left(A^{C} \cap B^{C}\right)=P(A \cup B)^{C}\right)\right)=1-P(A \cup B)=1-x-y+x y$
On the other hand,
$P\left(A^{C}\right) P\left(B^{C}\right)=(1-x)(1-y)=1-x-y+x y$
Thus $P\left(A^{C} \cap B^{C}\right)=P\left(A^{C}\right) P\left(B^{C}\right)$, and so A^{C} and B^{C} are independent.
In similar fashion, we can show that A and B^{C}, as well as A^{C} and B, are independent.

