

مميدرضا اميرى

Consider the following events for a family with children:

- A={children of both sexes},
- $B = \{at most one boy\}$
- (a) Show that *A* and *B* are independent events if a family has three children.
- (**b**) Show that *A* and *B* are dependent events if a family has only two children.
- (a) We have the equiprobable spase $S = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}.$ Here $A = \{bbg, bgb, bgg, gbb, gbg, ggb\}$ and so $P(A) = \frac{6}{8} = \frac{3}{4}$ $B = \{bgg, gbg, ggb, ggg\}$ and so $P(B) = \frac{4}{8} = \frac{1}{2}$ $A \cap B = \{bgg, gbg, ggb\}$ and so $P(A \cap B) = \frac{3}{8}$ Sinc $P(A)P(B) = \frac{3}{4} \cdot \frac{1}{2} = \frac{3}{8} = P(A \cap B).$

A and B are independent. $A^{(H)} = \frac{1}{4} \frac{1}{2} \frac{1}{8} \frac{1}{4} \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{8} \frac{1}{4} \frac$

(**b**) We have the equiprobable space $S = \{bb, bg, gb, gg\}$. Here $A = \{bg, gb\}$ and so $P(A) = \frac{1}{2}$ $B = \{bg, gb, gg\}$ and so $P(B) = \frac{3}{4}$ $A \cap B = \{bg, gb\}$ and so $P(A \cap B) = \frac{1}{2}$

Since
$$P(A)P(B) \neq P(A \cap B)$$
, A and B are dependent.

1. جعبهٔ A شــامل پنج مهرهٔ قرمز و سه مهرهٔ آبی است و جعبهٔ B شامل سه
مهرهٔ قرمز و دو مهرهٔ آبی است. از هــر جعبه یک مهره به تصادف بیرون
کشیده شده.
الف) احتمال P را بیابید که هر دو مهره قرمز باشند.
ب) احتمال P را بیابید که یکی قرمز و یکی آبی باشد.
الف) احتمال P را بیابید که یکی قرمز از A برابر با
$$\frac{\Delta}{h}$$
 و از B، $\frac{\pi}{2}$ است.
get پیشامدها مستقل اند، $\frac{\pi}{h} = \frac{\pi}{2} \times \frac{\Delta}{h} = P$.
(B) احتمال انتخاب یک مهرهٔ قرمز از A برابر با $\frac{\Delta}{h}$ و از B، $\frac{\pi}{2}$ است.
پوز پیشامدها مستقل اند، $\frac{\pi}{h} = \frac{\pi}{h} \times \frac{\Delta}{h} = P$.
(C) احتمال P برای انتخاب یک مهرهٔ قرمز از A و یک مهرهٔ آبی از B،
برابر است با: $\frac{1}{4} = \frac{1}{4} \times \frac{\Delta}{h}$. احتمال P برای انتخاب یک مهرهٔ آبی
از A و یـک مهرهٔ قرمز از B، برابر است با: $\frac{P}{h} = \frac{T}{h} \times \frac{T}{h}$ بنابراین:
 $P = P_1 + P_7 = \frac{1}{4} + \frac{P}{4} = \frac{19}{400}$

پاست: فـرض کنیـد: P(A)=x و P(B)=Y، بنابرایـن: P(B)=۱-x و P(B)-x، بنابرایـن: P(B)-x چون A و B مستقلاند:

 $P(A \cap B) = P(A) \times P(B) = xy$

 $(A \cup C)^{C} = A^{C} \cap B^{C}$

بەعلاوە:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = x + y - xy$$

بنابراين:

$$P(A^{C} \cap B^{C}) = P((A \cup B)^{C}) = 1 - P(A \cup B) = 1 - x - y + xy$$

از طرف دیگر:

	لغتها و اصطلاحات مهم
شامل بودن شامل بودن	مەرە،تىلەرنگى
تصادفی	احتمال
انتخاب کردن انتخاب کردن	6. Event پیشامد
مستقل	بەعلاوە،از اين گذشتە
مشابه	قانون دمور گان 10.Demorgan'sLaw

- e Box *A* contains five red marbles and three blue marbles, and box *B* contains three red and two blue. *A* marble is drawn at random from each box.
 - (a) Find the probability p that both marbles are red.
 - (b) Find the probability p that one is red and one is blue.
 - (a) The probability of choosing a red marble from A is $\frac{5}{8}$ and from B is $\frac{3}{5}$. Since the events are independent, $P = \frac{5}{8} \times \frac{3}{5} = \frac{3}{8}$.

(b) The probability P_1 of choosing a red marble from A and a blue marble from B is $\frac{5}{8} \times \frac{2}{5} = \frac{1}{4}$.

The probability P_2 of choosing a blue marble from A and a red marble from B is $\frac{3}{8} \times \frac{3}{5} = \frac{9}{40}$.

Hence
$$P = P_1 + P_2 = \frac{1}{4} + \frac{9}{40} = \frac{19}{40}$$

Prove: If A and B are independent events, then A^{C} and B^{C} are independent events.

Let P(A)=x and P(B)=y. Then $P(A^{C})=1-x$ and $P(B^{C})=1-y$. Since *A* and *B* are independent. $P(A \cap B)=P(A)P(B)=xy$. Furthermore,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = x + y - xy$$

By DeMorgan's law, $(A \cup B)^c = A^c \cap B^c$; hence $P(A^c \cap B^c) = P(A \cup B)^c) = 1 - P(A \cup B) = 1 - x - y + xy$

On the other hand, $P(A^{C})P(B^{C})=(1-x)(1-y)=1-x-y+xy$ Thus $P(A^{C} \cap B^{C})=P(A^{C})P(B^{C})$, and so A^{C} and B^{C} are independent. In similar fashion, we can show that *A* and B^{C} , as well as A^{C} and *B*, are independent.